
Immune Checkpoint

Tumor cell evades immuno-surveillance and progress through different mechanisms, including activation of immune checkpoint pathways that suppress antitumor immune response. Immune checkpoint inhibitors (ICIs) reinvigorate the antitumor immune response by interrupting co-inhibitory signaling pathways and promote immune-mediated elimination of tumor cells. These molecules are crucial for maintaining self-tolerance and for modulating the length and magnitude of effector immune responses in peripheral tissues to minimize collateral tissue damage. Signalling through these molecules can drive effector immune cells (especially T cells) into a state known as 'exhaustion'. T cell exhaustion is defined by reduced effector function, sustained expression of immune checkpoint molecules and poor recall responses, and a transcriptional state distinct from that of functional effector or memory T cells. There are numerous types of activating and inhibitory interactions that occur between antigen-presenting cells (APCs) and T cells, and these interactions regulate the nature of immune responses.

Interactions of immune checkpoint inhibitors

The most extensive studies about immune checkpoints currently are cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed death protein 1, and its ligands (PD-1/PD-L1). Recent studies have identified several new immune checkpoint targets, like killer cell immunoglobulin-like receptors (KIRs), T cell immunoglobulin mucin 3 (TIM-3), natural killer cell group 2 member A (NKG2A), OX40, and 4-1BB, etc.

CTLA-4 (cytotoxic T lymphocyte antigen 4, CD152) is a B7/CD28 family member that is expressed on activated/ exhausted CD4⁺ T cell, regulatory T cell (Treg), activated/exhausted CD8⁺ T cell, and some tumors. CTLA-4 inhibits T cell activation and proliferation that is mediated by binding to CD80/86 from the cell surface of antigen-presenting cells. This process is an important mechanism by which Treg mediate immune suppression on bystander cells.

PD-1 (programmed death protein 1, CD279) is a member of the B7/CD28 family of co-stimulatory receptors. PD-1 is primarily expressed on activated T cells, natural killer (NK) cells, B cells, and certain myeloid cells that acts as a negative regulator of apoptosis and is instrumental in maintaining a T cell immune response. PD-1 has two ligands: PD-L1 (B7-H1; CD274) and PD-L2 (B7-DC; CD273). Both can be found on antigen-presenting cells such as dendritic cell, macrophage, and monocyte, but are otherwise differentially expressed on various non-lymphoid tissues. Interferon (IFN)-γ is the main trigger known to cause PD-L1 and PD-L2 upregulation.

Table 1 Key immune checkpoint receptor-ligand pairs

Receptor	Expressing cell	Ligand	Ligand-expressing cell		
Suppressive	Suppressive (negative) immune checkpoint				
CTLA-4	Activated T cell, Treg	B7 molecules (CD80 or CD86)	Antigen-presenting cell		
PD-1	Activated B and T cell, Antigen-presenting cell, NK cell	PD-L1 (CD274) or PD-L2 (CD273)	DC, macrophages, peripheral non-lymphoid tissue		
LAG-3	Activated T cell, Treg, NK cell, B cell, DC	MHC class II/Lectins	Antigen-presenting cell		
KIRs	Activated T and NK cell	MHC class I	Antigen-presenting cell		
TIGIT	Activated T cell, Treg, NK cell	PVR (CD155)/Nectine-2 (CD112)	Normal epithelial, endothelial, neuronal, fibroblastic cell		
TIM-3	Activated T cell	Galectin-9/HMGB-1	Multiple tissues		
VISTA	Naïve and activated T cell	VSIG-3	Neuron, glial cell		
CEACAM-1	Activated T and NK cell	CEACAM-1	T cell, NK cell		
NKG2A	Activated T and NK cell	MHC class I	Antigen-presenting cell		
Stimulatory (positive) immune checkpoint					
CD28	T cell	B7 molecules (CD80 or CD86)	Antigen-presenting cell		
OX40	Activated T cell, Treg, NK cell, neutrophils	OX40L	DC, macrophage, B cell, endothelial cell, smooth muscle cell		
CD137 (4- 1BB)	Activated T cell, NK cell, B cell, DC, endothelial cell	CD137L	Antigen-presenting cell		
GITR	T cell, NK cell, Treg	GITRL	Antigen-presenting cell, endothelium		
ICOS	Naïve and activated T cell	ICOSLG	Antigen-presenting cell, B cell, DC, macrophage		
CD27	Activated T and NK cell	CD70	Activated lymphocyte		

Abbreviations: CTLA-4, cytotoxic T lymphocyte antigen 4; Treg, regulatory T cell; PD-1, programmed death protein 1; NK cell, natural killer cell; PD-L1/2, programmed death protein ligand 1/2; DC, dendritic cell; LAG-3, lymphocyte-activation gene 3; KIRs, killer cell immunoglobulin-like receptors; TIGIT, T cell immunoreceptor with lg and ITIM domains; PVR, poliovirus receptor; TIM-3, T cell immunoglobulin mucin 3; HMGB-1, high mobility group box 1; VISTA, V-domain Ig suppressor of T cell activation; VSIG-3, V-set and Ig domain-containing 3; CEACAM-1, carcinoembryonic antigen-related cell adhesion molecule 1; NKG2A, natural killer cell group 2 member A; GITR, glucocorticoid-induced TNFR-related protein; GITRL, glucocorticoid-induced TNFR-related protein ligand; ICOS, Inducible T-cell co-stimulator; ICOSLG, Inducible T cell co-stimulator ligand.

KIRs (killer cell immunoglobulin-like receptor, CD158) are mainly expressed on NK cells and they bind to major histocompatibility complex (MHC) class I allotype (HLA-A, -B, or -C) molecules on the cell surface, which results in the negative regulation of the NK cell function, reducing NK cell-mediated lysis. In addition to NK cells, T cell subsets and iNKT (invariant natural killer T cells) also expressed KIR. Antibodies generated against KIR have been shown to induce NK cell-mediated lysis and therefore they make an ideal target for immunotherapy.

TIM-3 (T cell immunoglobulin mucin 3, as known as hepatitis A virus cellular receptor 2, HAVCR2) also contributes to immune tolerance by providing negative regulation of lymphocytes activation. It is expressed on multiple immune cells, including conventional T cells (activated, memory, and exhausted), Tregs, and innate immune cells. In cancer, chronic stimulation induces TIM-3 upregulation in tumor antigen-specific T lymphocytes, especially in CD8⁺ TIL (tumor infiltrating lymphocyte), and, at the same time, peripheral T cells show minimal TIM-3 expression. Similar to the PD-1/PD-L1 axis, TIM-3 plays a role in T cell exhaustion during chronic immune stimulation, and especially in trimming the Th1-type immune responses.

NKG2A/CD94 (natural killer cell group 2 member A, CD159) is a C-type lectin family and recognizes a non-classical MHC I molecule, HLA-E, as ligand. Almost 50% of the NK cells in the peripheral blood express NKG2A/CD94, primarily those that do not express inhibitory KIR. In addition, $\gamma\delta$ and CD8⁺ T cells also express NKG2A/CD94. Ligation of NKG2A and CD94 to HLA-E expressed on normal cells suppresses signaling activation, thereby avoiding the destruction of normal bystander cells.

OX40 (CD134, TNFRSF4) belongs to the superfamily of TNFR (tumor necrosis factor receptor) and can be detected on the surface of activated CD4⁺ and CD8⁺ T cells, and also on Tregs, NK cells, and neutrophils. The expression of its natural ligand, OX40L (CD252), can be induced by pro-inflammatory cytokines on dendritic cells, macrophages, B cells, and endothelial or smooth muscle cells. Stimulation via OX40 has been shown to overcome the negative effects induced by CTLA-4 in T cells and to antagonize the suppressive effects of Tregs on the activation of the effector cells.

4-1BB (CD137, TNFRSF9) can be primarily detected on activated CD8⁺ and CD4⁺ T cells but following induction with pro-inflammatory stimuli also appears on other cell types, including NK cells, B cells and dendritic cells, or endothelial cells following induction with pro-inflammatory stimuli. CD137 ligand (4-1BBL, CD137) is expressed on various antigen-presenting cells. Ligation of CD137 results in a pro-stimulatory signal, enhancing among others the tumor-selective cytotoxicity of CD8⁺ T cells and NK cells and secretion of IFN-γ.

Currently, the FDA (food and drug administration) has approved seven monoclonal antibodies targeting classical inhibitory immune checkpoints for the clinical treatment of patients with numerous cancer types: ipilimumab targeting CTLA-4 pathway, and six antibodies targeting PD-1/PD-L1 axis, including atezolizumab, avelumab, durvalumab, nivolumab, cemiplimab, and pembrolizumab. The FDA approval status for each of these antibodies in various cancer types in summarized as below.

Table 2The list of FDA-approved monoclonal antibodies acting as inhibitorsof negative checkpoints in human cancer

Checkpoint Inhibitor	Antibody Format	Examples of Types of Cancers with FDA-Approved Use	Year of First Approval
Ipilimumab	Human anti-CTLA4 lgG1	Melanoma, renal cell carcinoma (RCC), metastatic colorectal cancer	2011
Pembrolizumab	Humanized anti-PD-1 lgG4	Melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), urothelial bladder cancer, Hodgkin's lymphoma, head and neck cancer, Merkel cell carcinoma, microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) cancer, gastric cancer, hepatocellular carcinoma (HCC), cervical cancer, primary mediastinal large B-cell lymphoma (PMBCL)	2014
Nivolumab	Human anti-PD-1 lgG4	Melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), urothelial bladder cancer, Hodgkin's lymphoma, head and neck cancer, colorectal cancer, hepatocellular carcinoma (HCC), small cell lung cancer (SCLC)	2014
Atezolizumab	Humanized anti-PD-L1 lgG1	Non-small cell lung cancer (NSCLC), urothelial bladder cancer, small cell lung cancer (SCLC), triple-negative breast cancer	2016
Avelumab	Human anti-PD-L1 lgG1	Merkel cell carcinoma, urothelial bladder cancer, renal cell carcinoma (RCC)	2017
Durvalumab	Human anti-PD-L1 lgG1	Non-small cell lung cancer (NSCLC), urothelial bladder cancer	2017
Cemiplimab	Human anti-PD-L1 lgG4	Cutaneous squamous-cell carcinoma (cSCC)	2018

Reference

Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018 Feb;18(2):91-104.

Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. *Front Oncol.* 2018 Mar 28;8:86. Marhelava K, Pilch Z, Bajor M, et al. Targeting Negative and Positive Immune Checkpoints with Monoclonal Antibodies in Therapy of Cancer. *Cancers (Basel).* 2019 Nov 8;11(11):1756. Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. *Front Immunol.* 2020 Feb 13;11:167. doi: 10.3389/fimmu.2020.00167. eCollection 2020. Gong J, Chehrazi-Raffle A, Reddi S, et al. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. *J Immunother Cancer.* 2018 Jan 23;6(1):8.

